(资料图)
夏爽
摘要:复杂网络中异常检测是数据挖掘与网络安全领域的重要研究方向。随着大数据与图结构数据的广泛应用,传统基于向量或规则的方法已难以应对节点间关系复杂、数据异质性高的检测任务。图神经网络(GNN)作为一种融合结构与属性信息的深度学习模型,具备强大的图表示学习能力,为异常识别提供了有效路径。本文系统梳理了GNN的基本原理与核心算法,并结合社交、金融、通信等网络场景,探讨其在异常检测中的具体应用机制与效果表现,最后分析了存在的局限与发展趋势。
关键词:图神经网络 复杂网络 异常检测 深度学习 结构建模
在大规模网络系统中,识别异常节点、边或结构对于保障系统稳定性和安全性至关重要。复杂网络中,节点关系错综复杂,异常形式多样,传统方法在特征表达与建模能力上存在明显不足。图神经网络(GNN)是一种用于处理图数据的深度学习模型,它可以有效捕获图数据中的结构信息和特征信息。相比传统方法,GNN能够将结构上下文与节点属性联合建模,为异常检测提供更具表达力的识别依据。本文旨在分析GNN在不同类型复杂网络中的应用表现,并探讨其技术优势与实际挑战。
一、图数据结构与图神经网络模型基础
(一)图数据的结构特征与异常检测挑战
在实际场景中,图数据常用于表示不同个体之间复杂的关系,例如社交网络、金融网络和微服务网络等。图数据由节点和边组成,不同节点表示不同的实体,边表示它们之间的关系,这种非欧式结构具有高度的表达自由度。复杂网络的规模不断扩大,结构从简单的无向图逐步发展为属性图、异构图甚至动态图,节点属性多样,关系层次丰富。这种特性虽然增强了数据表达能力,但也增加了异常检测的难度。例如,在金融网络中,隐藏在大量正常交易中的欺诈行为往往没有明显的数值特征,而是隐藏在结构中,如账户之间的异常转账路径、短时间内高频交易等,这类异常难以通过传统方法精准发现。